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A simplified density functional theory for a macroion suspension is examined, where the correlation free
energy corresponds to the macroion self-energy, treated within a linearized or Debye-Hückel approximation.
The model possesses a miscibility gap �liquid-liquid phase separation� at low ionic strength. Within the gap,
density profiles, electrical structure, and surface tension are calculated for the interface between coexisting
phases, using a variational approximation. Additionally, structure factors are calculated for the homogeneous
system. As one approaches the critical points, the structure factors can diverge at a nonzero wave vector,
signaling the onset of charge density wave phases. Although the quantitative results should be treated with
care, the results may be indicative of the rich phenomenology that can arise in asymmetric charged systems.
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I. INTRODUCTION

The phase behavior of macroion suspensions has attracted
much interest over the last decade. There is a plethora of
sometimes conflicting experimental and theoretical results,
and several reviews are available �1–5�. Simulations have
clearly shown that liquid-liquid phase separation occurs in a
macroion suspension at strong enough electrostatic coupling
�6–10�, corresponding to a multivalent supporting electrolyte
and/or a reduced dielectric constant. Where phase separation
occurs, outstanding questions remain about the density pro-
files, surface tension, and electrical structure of the interfa-
cial region between the coexisting phases. These questions
provide the focus of the present paper.

The approach to these issues taken here is to develop a
density functional theory �DFT�, motivated by the earlier
analysis in Ref. �11� �see also Appendix A�. To make
progress, a rather gross simplification has been adopted, in
which the only contribution to the correlation free energy in
the DFT arises from the macroion self-energy computed in a
simple closed form using Debye-Hückel theory. The reasons
for studying such a simplified model are threefold. First, al-
though the model is very basic, it nevertheless possesses a
rich and perhaps surprising phenomenology which may be
relevant to the study of real systems. Second, the starting
point is sufficiently simple that a physically motivated ansatz
to a DFT can be written down “by inspection.” Third, there
are very few examples of the application of DFT to asym-
metric charged systems and the present analysis reveals some
interesting technical points which may be transferrable to
more complicated and more realistic models.

It is crucial for internal consistency that the DFT used to
solve for the interfacial properties and structure factors is
also used to generate the bulk phase behavior. Fortunately,
when applied to a homogeneous system, the present DFT
describes phase separation in the form of a miscibility gap at
low ionic strength which is in reasonable accord with more
sophisticated approaches. The physics of the phase separa-
tion lies in the dependence of the macroion self-energy on
the local ionic strength: macroions drift toward regions of

high ionic strength, which by charge neutrality are regions
where other macroions have also congregated. This is a
many-body effect. Within the linearization approximation,
the effect grows without bound as the macroion charge is
increased, and thus the mechanism can drive phase separa-
tion at sufficiently large macroion charges. In reality, nonlin-
ear effects �counterion condensation� limit the effective mac-
roion charge �12–16�, and therefore this mechanism is likely
insufficient in itself to drive phase separation in real systems
�17–23�. It is still a contributing factor in real systems
though, operating in conjunction with other effects such as
correlated fluctuations in the counterion clouds around mac-
roions and the sharing of counterions between macroions
�6,7,9,24,25� �see also Appendix B�. In the context of the
present model, phase separation is found in a region in pa-
rameter space where the neglected nonlinear effects should
start to become important. Therefore, one should interpret
the quantitative results with caution.

The results obtained for the density profiles and the sur-
face tension between coexisting phases are in accord with
previous expectations, and include the appearance of a
liquid-liquid junction potential �11,26–28�. In addition, the
model also makes predictions for the structure factors. These
are found to obey the Stillinger-Lovett moment conditions
�29,30�, although it turns out this is not a stringent test of the
theory. Surprisingly, the structure factors may diverge at a
nonzero wave vector as one approaches the critical points.
This suggests the possibility that the critical points in these
systems may be replaced by charge density wave phases
�31�. This phenomenological possibility in charged systems
was first suggested by Nabutovskii and co-workers �32–34�.

The only previous work on the interfacial properties of a
phase-separated macroion suspension appears to be that of
Knott and Ford �35�. They compute the surface tension using
square-gradient theory, but discard the possible electrical
structure at the interface.

II. SPECIFICATION OF THE MODEL

The model treats macroions as spheres of �positive�
charge Z, diameter �, and number density �m �volume frac-
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tion �=��3�m /6�. Also present are small ions �“salt” ions�
which are univalent counterions and coions at number den-
sities �− and �+, respectively. It is supposed that there is only
one species of counterion. All the ions are embedded in a
structureless dielectric continuum characterized by a Bjerrum
length lB, so that the electrostatic interaction energy between
a pair of univalent charges separated by a distance r is lB/r,
in units of kBT where kB is Boltzmann’s constant and T is the
temperature �for water at room temperature, lB�0.72 nm�.
Assuming that the size of the small ions is irrelevant �see
Appendix C�, the interactions are thus completely param-
etrized by the dimensionless ratio � / lB and the charge Z. It is
often convenient to pretend that the dielectric permittivity of
the background is independent of temperature, in which case
lB�1/T. This means that � / lB can be regarded as a dimen-
sionless temperature.

The DFT is specified by giving the free energy F as a
functional of the spatially varying number densities �m�r�
and �±�r� �36,37�. The functional is decomposed into ideal,
mean-field, and correlation contributions:

F

kBT
=� d3r �

i=m,±
�i�r�ln

�i�r�
e�i

0 +
lB

2
� d3r d3r�

�z�r��z�r��
	r − r�	

+
1

kBT
� d3r �m�r�fm�r� . �1�

The first term is the ideal term, where e is the base of natural
logarithms and the �i

0 are unimportant base units of concen-
tration related to the definition of the standard state �38�. The
second term is a mean-field electrostatics term, where �z�r�
=�izi�i�r� is the local charge density, with zi= 
Z ,1 ,−1� as
i= 
m , + ,−�, and a factor 1 /2 to allow for double counting.
The third term represents the correlation free energy. As dis-
cussed in the Introduction, only the macroion self-energy fm
is included in this term. This is computed using Debye-
Hückel theory �39–42�,

fm�r� =
2Z2lBkBT

�����r� + 2�
, �2�

where ��r� is a local inverse Debye screening length, defined
in terms of an average local ionic strength �̄I�r� through

���r��2 = 8�lB�̄I�r� ,

�̄I�r� =� d3r�w�	r − r�	��I�r�� ,

�I�r�� = ��+�r�� + �−�r���/2. �3�

The ionic strength includes all the small ions, but not the
macroions �11�. In principle, allowance could be made for
the macroion excluded volume, but this effect is of second-
ary importance and for simplicity has been omitted.

The smoothing kernel in Eqs. �3� is normalized so that
�d3r w�r�=1. Most of the analysis below has been carried
out with the arbitrary choice �43�

w�r� = ����2�−3/2 exp�− r2/���2�� . �4�

This smoothing kernel is of range ��. The argument below
suggests that the parameter � should be of order unity. For
the most part therefore I will set �=1 in the calculations.
Equations �1�–�4� completely specify the DFT, and every-
thing discussed below can be derived from them.

The decomposition into ideal, mean-field, and correlation
contributions is a standard approach �44–48�. The approxi-
mation made for the correlation term deserves more discus-
sion though. As discussed in the Introduction, the only piece
of physics that has been incorporated is the macroion self-
energy. This has a nontrivial dependence on the local ionic
strength since each macroion polarizes the surrounding elec-
trolyte and becomes surrounded by a “double layer.” The
polarization is obviously a local effect though, which allows
for a straightforward ansatz to be made for the correlation
contribution in a spatially inhomogeneous system, as indi-
cated in Eqs. �1�–�4�. The unobvious step is the requirement
to introduce some notion of smoothing, or smearing, in the
sampling of the local ionic strength. The physical motivation
for this is that one can derive the self-energy by integrating
out the small ion degrees of freedom, with the main contri-
bution coming from variations on length scales correspond-
ing to the structure in the double layer �40�. Thus only varia-
tions in ionic strength on length scales 	� should be
included in the model. The smoothing kernel is a device for
achieving this �and motivates the choice for ��. A second
technical reason for introducing the smoothing kernel is
found below in Sec. V. The DFT becomes unphysical with
respect to the structure factors if one uses a “point model”
where the dependence is on the ionic strength at, say, the
center of the macroion.

The potential energy of a small ion at the surface of the
macroion, in units of kBT, is ±ZlB/�. Equation �2� uses the
Debye-Hückel expression for the self-energy, which assumes
ZlB/� is small. The expression becomes increasingly inaccu-
rate for ZlB/�	1 �17–23�. The interesting effects are found
only at larger values of ZlB/� though, where nonlinear ef-
fects start to become important. Therefore, as already men-
tioned, one should treat the quantitative results with caution.

III. BULK PHASE BEHAVIOR

In this section, I shall consider the bulk phase behavior
predicted by the free energy of Eqs. �1�–�4�. This is a homo-
geneous situation in which the density variables lose their
spatial dependence. In this limit, one can prove that the mean
field term should be replaced by a condition of bulk charge
neutrality, �z=�izi�i=0 �19,49�.

The required charge neutrality condition can be imposed
in two ways. The first route is to add a term 
kBT�izi�i to the
free energy, where 
kBT is a Lagrange multiplier. This ap-
proach has the advantage of making a close connection to the
DFT. Taking this approach, the free energy becomes

F

VkBT
= �

i

�i�ln
�i

e�i
0 + zi
� +

2Z2lB�m

���� + 2�
�5�

where V is the system volume and �2=4�lB��++�−�. The
distinction between the smoothed and unsmoothed ionic

PATRICK B. WARREN PHYSICAL REVIEW E 73, 011411 �2006�

011411-2



strengths disappears in the homogeneous limit. In this ap-
proach the �i are treated as three independent density vari-
ables. At the end of any calculations, 
 is adjusted to get
�izi�i=0. The value of 
 depends on the state point under
consideration.

The second way to enforce charge neutrality is to elimi-
nate one of the density variables. Since this is numerically
quite convenient, it is the approach that will be adopted in
the rest of this section. Following convention, one writes
�−=Z�m+�s and �+=�s, where �s is the added salt concen-
tration. Substituting for �± in Eq. �5� gives a free energy from
which 
 has disappeared, and which depends only on two
independent density variables �m and �s.

I now discuss the phase behavior predicted by this free
energy. First, in the absence of salt some additional simpli-
fications can be made. In the limit �s→0, the free energy can
be written in a dimensionless form as

1

Z

��3F

6VkBT
= � ln � +

u
6u + 1

�6�

where u=�ZlB/� and � is the macroion volume fraction. To
get to this point, I have assumed that Z�1 and hidden some
constants and terms strictly proportional to �m since they do
not affect the phase behavior.

Equation �6� predicts that the dependence on � / lB and Z
is through the single combination ZlB/� �there is no reason
to suppose that this should be the case in a more accurate
theory�. This is the same parameter that quantifies the accu-
racy of the Debye-Hückel linearization approximation. The
inverse of this, � / �ZlB�, is proportional to the dimensionless
temperature discussed above. Figure 1�a� shows the univer-
sal phase behavior predicted by Eq. �6� as a function of the
macroion volume fraction and � / �ZlB�. At small enough val-
ues of � / �ZlB�, a two-phase region is encountered in the
phase diagram. The two-phase region corresponds to phase
coexistence between macroion-rich and macroion-poor
phases. The identities of these phases merge at a critical
point located at ��9.18�10−3 and � / �ZlB��0.132.

One can compare this with the simulation results of Re-
ščič and Linse for Z=10 macroions �10� �see also Appendix
B�. They also find a two-phase region on lowering tempera-
ture, with a critical point located at ��0.15 and � / �ZlB�
�0.077. While the phenomenology is the same, the numeri-
cal values are somewhat different from the prediction of Eq.
�6�. Not unexpectedly, the present model is too crude to ob-
tain quantitatively reliable results. Interestingly, in terms of
accuracy of prediction, the present theory is not much worse
than symmetrized Poisson-Boltzmann theory or the mean
spherical approximation �50–52�.

I now turn the effect of added salt, and analyze the pre-
dictions of the full free energy in Eq. �5�. In general, as salt
is added, the critical point in Fig. 1�a� first moves to higher
dimensionless temperatures, passes through a maximum, and
then starts to move to lower dimensionless temperatures
again. This nonmonotonic behavior is shown in Fig. 1�b� for
Z=103. A similar effect of added salt is seen in a number of
other approaches �11,20,21,39,40,53�, although interestingly
it is contradicted by a recent simulation study �54�. This

difference might be related to the assumed size of the small
ions though, as discussed in Appendix C. In the presence of
added salt, it is no longer true that the dependence on Z and
� / lB can be combined into a single parameter; however, for
comparison with the phase behavior in the absence of salt,
Fig. 1�b� shows the behavior as a function of � / �ZlB� at this
fixed value of Z.

The reentrant behavior means that for parameters such as
those corresponding to the dashed line in Fig. 1�b�, there are
two critical points in the ��m ,�s� plane, and one encounters a
reentrant single-phase region at low added salt. The dashed
line in Fig. 1�b� is for Z=103, �=100 nm, and lB=0.72 nm,
and the corresponding phase behavior in the ��m ,�s� plane is
shown in Fig. 2. It is seen that the two phase region appears
as a miscibility gap in this representation.

As � / lB is increased or Z is decreased, the two critical
points move towards each other and finally disappear at a
double critical point, or hypercritical point �55�. For ex-
ample, for Z=103 the double critical point corresponds to the
maximum of the solid line in Fig. 1�b�, where � / �ZlB�
�0.145, ��1.04�10−2, and �s�8.98 M.

The bulk phase behavior predicted by the homogeneous
version of the DFT, Eq. �5�, thus closely resembles that pre-
dicted by various other approaches including the theory dis-
cussed in Ref. �11�.

FIG. 1. �a� Universal phase behavior in the absence of salt,
predicted by Eq. �6� �upper curve�. The simulation results of Reščič
and Linse �10� are also shown �lower curve with marked points�. �b�
Behavior of the critical point at Z=103 as salt is added. The dashed
line corresponds to the parameters used in Fig. 2 below.

PHASE SEPARATION, INTERFACE PROPERTIES, AND… PHYSICAL REVIEW E 73, 011411 �2006�

011411-3



IV. INTERFACIAL PROPERTIES

The reason for introducing the DFT, of course, is to cal-
culate the macroion and small ion density profiles through
the interface between two coexisting phases, and to compute
the surface tension. In order to set the problem up, it is con-
venient to introduce the grand potential �36,37�

� = F −� d3r �
i=m,±

i�i�r� �7�

where i are the chemical potentials of the three species, and
F is defined in Eqs. �1�–�4�. At this point it is also convenient
to rewrite the mean-field term in Eq. �1�. Define a dimen-
sionless electrostatic potential


�r� = lB� d3r�
�z�r��
	r − r�	

�8�

so that the mean-field term in Eq. �1� can be written

lB

2
� d3r d3r�

�z�r��z�r��
	r − r�	

=
1

2
� d3r 
�r��z�r� . �9�

By direct substitution, one verifies that the potential defined
by Eq. �8� solves the Poisson equation

�2
 + 4�lB�z = 0. �10�

Using this and Green’s first identity �56�, the mean-field term
now becomes

1

2
� d3r 
�r��z�r� =

1

8�lB
� d3r	�
	2. �11�

This is recognized as the electric field energy since �
 is
essentially the electric field strength. One can now define a
grand potential density ��r� such that �=�d3r ��r� and

� = �
i

�i�kBT ln
�i

e�i
0 − i� +

kBT

8�lB
	�
	2 + fm�m �12�

where the explicit dependence on the spatial coordinate has
been suppressed. For a homogeneous system, �=−p where p
is the pressure.

Setting �� /��i�r�=0 and using Eq. �8� gives

i

kBT
= ln

�i�r�
�i

0 + zi
�r� +
�

��i�r�
�� d3r��m�r��fm�r��

kBT
� .

�13�

I now suppose that all the variation occurs in one direction x
normal to the interface. At large distances from the interface,
x→ ±�, the number densities approach those corresponding
to the coexisting bulk phases. The grand potential density
approaches a constant value ��±�� equal to �minus� the
pressure, and therefore the same in coexisting phases. The
surface tension � can therefore be identified as the excess
grand potential per unit area

� = �
−�

�

dx�� − ��±��� . �14�

To make a connection with the bulk phase behavior, con-
sider the chemical potentials as derived from Eq. �5�,

i

kBT
= ln

�i

�i
0 + zi
 +

�

��i
� 2Z2lB�m

���� + 2�� . �15�

Comparison with Eq. �13� shows that 
 in Eq. �5� is simply
the limiting value of 
�r� in Eq. �13�, in the case of a homo-
geneous system �57�.

For the interface problem, one has two limiting values

�±��, which are not the same. The difference �
=
���
−
�−�� arises because of the electrical structure at the inter-
face. It is a liquid-liquid junction potential analogous to the
Donnan potential that appears across a semipermeable mem-
brane �58,59�. Since 
 in Eq. �15� is determined by the bulk
densities, the difference �
 can be calculated without having
to solve for the interface structure. In fact, because of the
symmetric way that �± enters into the correlation free energy,
a simple expression obtains �11�,

�
 =
1

2
ln��−���

�+���
�+�− ��
�−�− ��� . �16�

What should be used for the chemical potentials though?
Note first that global charge neutrality means Eq. �14� for the
surface tension is unaffected by a global shift in 
. Hence we
are free to set 
=0 in one of the coexisting phases. Then Eq.
�15� with 
=0 and bulk densities corresponding to the cho-
sen reference phase fixes the chemical potentials �the �i

0

dependence will cancel out�. For the inhomogeneous prob-
lem this means one can take, for example, 
�−��=0 with
�i�−�� corresponding to the bulk densities in the chosen ref-
erence phase, and 
���=�
 computed from Eq. �16�, with
�i��� corresponding to the bulk densities in the phase that
coexists with the chosen reference phase.

FIG. 2. Phase behavior at Z=103, �=100 nm, and lB=0.72 nm,
corresponding to the dashed line in Fig. 1. The miscibility gap is
bounded above and below by critical points. The dashed tie line is
the one for which the interfacial properties are reported in Figs. 3–5
below.
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In principle, at this point the nonlinear integral equations
should be solved together with the Poisson equation to find
the ion density profiles. Alternatively, a variational approxi-
mation can be adopted in which � is minimized with respect
to parameters in trial functions which specify the ion density
profiles. The trial functions can be chosen to satisfy the re-
quired boundary conditions automatically. This variational
alternative is the one that has been followed in the present
work, and more details of the numerical approach are given
in Appendix D.

I now turn to the results. Figure 3 shows representative
density profiles for the macroion and small ions through the
interface between the coexisting phases, corresponding to the
highlighted tie line in Fig. 2. The profiles interpolate
smoothly between the coexisting bulk densities. Figure 4
shows the detailed electrical structure at the interface. The
top plot shows that the charge density �z=Z�M +�+−�− has a
dipolar structure. Correspondingly there is a localized elec-

tric field, shown in the middle plot, and a smooth jump of
�
�20.5 mV in the electrostatic potential, shown in the
bottom plot. This is the junction potential, which can also be
calculated directly from the coexisting bulk densities as in
Eq. �16�. This electrical structure is in accord with general
expectations for charged systems �45,60,61�.

Figure 5 shows the grand potential density and the elec-
trostatic component thereof—the second term of Eq.
�12�—as a function of distance through the interface. For this
particular case the area gives ��0.727� �kBT /�2�. The or-
der of magnitude of this should not come as a surprise since
� and kBT are the only relevant length and energy scales in
the problem. Inserting actual values, ��0.3 N m−1, which
is typical for for soft matter interfaces �26,27�.

Figure 6 shows how the surface tension and interface
width vary as one approaches the upper critical point in Fig.
2. The width d is defined operationally as d2= �x2�− �x�2,
where �¯�=�−�

� �¯�p�x�dx /�−�
� p�x�dx, with p�x�= 	��x�

−��±��	2. These results are obtained by repeating the calcu-
lations underlying Figs. 3–5 for a sequence of tie lines ap-
proaching the critical point. They are reported as a function
of the distance from the critical point, expressed in terms of
a normalized salt chemical potential. Figure 6�b� also shows
the correlation lengths �± in the coexisting phases determined
from the exponential decay of the density profiles into the
bulk phases �see Appendix D�. As the critical point is ap-
proached, these approach each other, and diverge in the same
way as the interface width. Figure 6 reveals that the surface
tension and length scales are in accord with the expected
scaling behavior for a mean-field theory �62�. Last, Eq. �16�
shows that the junction potential �
 should vanish in pro-
portion to the density difference, on approaching the critical
point �63�.

What happens at the lower critical point in Fig. 2 though?
The next section shows that this is a nontrivial question with
perhaps an unexpected answer. In the calculations in the
present section, I have assumed that the interface profiles
smoothly interpolate between the coexisting phases. Indeed,
this is the basis of the numerical method detailed in Appen-
dix D. However, such an approach rules out the possibility of
oscillatory behavior in the density profiles �or to be precise,

FIG. 3. Macroion volume fraction �top� and small ion concen-
trations �bottom� through the interface corresponding to the dashed
tie line in Fig. 2.

FIG. 4. Charge density �top�, electric field �middle�, and elec-
trostatic potential �bottom� corresponding to the ion density profiles
shown in Fig. 3.

FIG. 5. Excess grand potential density �solid line� and electro-
static component thereof �dashed line� corresponding to the ion
density profiles shown in Fig. 3.
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the numerical methodology is inappropriate for this sce-
nario�. At lower salt concentrations though, one can enter a
region where oscillatory behavior is expected. These consid-
erations are made mathematically precise in the next section.

V. STRUCTURE FACTORS

The structure factors in a homogeneous system can be
determined from the DFT by functional differentiation
�36,37�. Where accurate structure factors are already known,
typically from a combination of simulation and integral
equation approaches, this can be used to constrain the DFT.
In the present case for example, one could try to constrain
w�r� in Eq. �4�. However, accurate structure factors are not
known for this problem, and furthermore the DFT has been
constructed to include only the �linearized� macroion self-
energy. Thus it does not make sense to constrain the DFT.
The present section simply reports the structure factors that
are predicted from the theory as given in Eqs. �1�–�4�.

The structure factor matrix is �64,65�

S̃ij�q� = �i�ij + �i� jh̃ij�q� �17�

where i and j run over 
m , + ,−� and h̃ij�q�
=�d3r e−iq·rhij�r� is the Fourier transform of the pair corre-

lation functions hij�r�=gij�r�−1. Reciprocal space quantities
will be denoted by a tilde. The bulk densities �i are con-
stants, fixed by the choice of state point. Deviations away
from these will be denoted by ��i. Equation �17� uses the

normalization S̃ij�q�→�i�ij as q→�, which simplifies some
of the expressions below �65�.

To obtain the structure factor matrix, start by defining the
real-space function

Sij
−1�	r − r�	� =

1

kBT
� � 2F

��i�r��� j�r��
�

�i�r�→�i

�18�

where F is the full free energy. The limit of a homogeneous
system is taken after the functional differentiation step so
that Sij

−1 only depends on 	r−r�	 as indicated. Transforming
to reciprocal space, one can show that

S̃ij
−1�q� =� d3r e−iq·rSij

−1�r� �19�

is simply the matrix inverse of S̃ij,

�
j

S̃ijS̃jk
−1 = �ik. �20�

These results follow by combining the Ornstein-Zernike re-

lation for a multicomponent mixture in reciprocal space, h̃ij

= c̃ij +�k�kc̃ikh̃jk where cij are the direct correlation functions
�64�, with the DFT result that cij =−�1/kBT�� 2Fex/��i�� j

where Fex is the excess free energy �36,37�.
The route to the structure factors offered by Eqs.

�18�–�20� is based on “classical” arguments �64�. One can
also make the connection via field theoretical methods. Ex-
panding the free energy functional to second order gives

�F

kBT
=

1

2
� d3r d3r��

ij

��i�r��� j�r��Sij
−1�	r − r�	� , �21�

where Sij
−1 is defined by Eq. �18�. It follows that �66�

���i�r��� j�r��� = Sij�	r − r�	� �22�

where Sij�r�=�d3q / �2��3eiq·rS̃ij�q� is the structure factor
matrix expressed as a real-space quantity. Although care has
to be taken at the point r=r�, one can easily show that the
density-density correlation function on the left hand side of
Eq. �22� is the same as the Fourier transform of the right
hand side of Eq. �17�.

The Stillinger-Lovett moment conditions constrain the be-
havior of the structure factors in reciprocal space in a par-
ticularly clear manner �29,30,44,67–69�. First, the zeroth-
moment conditions express perfect screening and are
�d3r�izi�igij�r�=−zj for j= 
m , + ,−�. Using charge neutrality
and assuming the structure factors are regular at q=0, one
can easily show that this implies

�
i

ziS̃ij�q� = O�q2� . �23�

The second-moment condition is �d3r r2�ijzizj�i� jgij�r�
=−3/ �2�lB�. This constrains the long wavelength behavior
of the charge-charge structure factor,

FIG. 6. �a� Surface tension as a function of salt chemical poten-
tial. �b� Interface width �solid line� and correlation lengths �dashed
lines� as a function of salt chemical potential. In both, the salt
chemical potential is expressed as a normalized distance from the
upper critical point.
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�
ij

zizjS̃ij�q� =
q2

�4�lB�
+ O�q4� . �24�

In real space, this means that ���z�r���z�r���� lB/ 	r−r�	 for
	r−r�	→�. Thus charge density fluctuations vanish with the
Coulomb law at large distances, corresponding to the fact
that the electrostatic energy dominates in the free energy for
long wavelength density fluctuations unless they happen to
be charge neutral �30,67,69�.

I now apply the formalism of Eqs. �18�–�20� to the
present DFT defined in Eqs. �1�–�4�. The result for the in-
verse structure factor matrix in reciprocal space can be writ-
ten as

S̃ij
−1 = T̃ ij

−1 +
4�lBzizj

q2 �25�

where the first term comes from the ideal and correlation
contributions to the free energy and the second term from the
mean-field electrostatics. The first term is in detail

T̃ ij
−1 = �ij/�i + �mZ2�2lB

3 �3h1���,�q��ij�

− Z2�lB
2 �h2���,�q��ij� , �26�

where the functions h1,2�x=�� ,y=�q� are

h1 =
8e−�y2/2�2 + 3x�

x3�x + 2�3 , h2 =
4e−�y2/4

x�x + 2�2 , �27�

and the matrices are

�mm� = �m±� = 0, �±±� = 1,

�mm� = �±±� = 0, �m±� = 1. �28�

The y dependence �y=�q� in Eq. �27� arises from the Fourier
transform of the weight function of Eq. �4�. Note here that
the point model alluded to in Sec. II corresponds to the limit
�→0 in Eqs. �27�. In this limit, the theory becomes unphysi-

cal since S̃ij�q� does not have the correct limiting behavior as
q→�. This provides a strong technical motivation for intro-
ducing a smoothing kernel.

For any given state point and value of q, Eqs. �25�–�28�
define S̃ij

−1 which can be inverted numerically to find all com-
ponents of the structure factor matrix. A partial solution can

be obtained analytically in terms of the subsidiary matrix T̃ij,

S̃ij = T̃ij −

4�lB�
kl

zkzlT̃ikT̃jl

q2 + 4�lB�
kl

zkzlT̃kl

. �29�

From this one can readily prove that S̃ij satisfies all the
Stillinger-Lovett moment conditions exactly, as in Eqs. �23�
and �24� above.

Another result follows from the dominance of the ideal
contribution over the correlation contribution at low densi-

ties. In the limit �i→0 one finds T̃ij→�i�ij and

S̃ij → �i�ij −
4�lBzizj�i� j

q2 + 4�lB�k
zk

2�k

. �30�

This is in fact exactly in accordance with the Debye-Hückel
limiting law at low densities. To see this, note that �
= �4�lB�kzk

2�k�−1/2 is the Debye screening length defined to
include all ionic species. Thus in real space, Eqs. �17� and
�30� indicate that hij =−zizj�lB/r�e−r/�, in correspondence
with the Debye-Hückel limiting law.

It is clear that the moment conditions and the Debye-
Hückel limiting law behavior follow from the construction of
the DFT to include a mean-field contribution separately from
the correlation term. This construction is in turn motivated
by the expected behavior of the direct correlation functions
cij�r� at r→�, as Evans and Sluckin have described �44�.
The form of the correlation term is unimportant, so long as it
is regular at both q→0 and �i→0. Thus a DFT approach to
charged systems incorporates automatically a degree of in-
ternal consistency, although yet further requirements could
be imposed �70�.

For the remaining part, I now focus on the macroion

structure factor S̃mm. Note that the theory includes the
macroion-macroion electrostatic interaction explicitly in the
mean-field term, and an additional indirect interaction in the

correlation term. The computation of S̃mm reveals the com-
bined effect of these macroion interactions on the macroion
correlations.

Typically S̃mm has a “hole” in reciprocal space for q�
�1. This corresponds to the macroion electrostatic repul-
sions. Within the correlation hole though, there is additional
structure. This becomes particularly important in the vicinity
of the phase separation region. Two kinds of behavior are

possible: at higher salt concentrations S̃mm rises to a maxi-

mum as q→0, or at lower salt concentrations S̃mm acquires a
peak at some q*�0. In the phase diagram, the two alterna-
tives are separated by a �macroion� “Lifshitz line” �71�, de-

fined to be the locus of points for which 	�S̃mm /��q2�	q=0

=0. Figure 7�a� shows the two behaviors for a pair of typical
state points above and below the Lifshitz line, and Fig. 7�b�
shows the Lifshitz line superimposed on the bulk phase be-
havior.

Also shown in Fig. 7�b� is the spinodal line computed
from the bulk free energy in Eq. �5� of Sec. III. One can

check that S̃mm�q=0� diverges on this spinodal line; in fact
all the q=0 components of the structure factor matrix diverge

because the determinant of S̃ij
−1 vanishes. For salt concentra-

tions above the Lifshitz line, this divergence at q=0 can be
accommodated within the general behavior of the structure
factor. Of course, state points within the binodal are meta-
stable so the divergence is strictly only visible as the upper
critical point is approached. The fact that the structure factors
diverge on the spinodal line is no coincidence, since thermo-
dynamic consistency by the compressibility route is assured
for a DFT �72�.

What happens at salt concentrations below the Lifshitz
line? Here, the peak in Smm at q*�0 is found to diverge
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before the bulk spinodal line is reached. The shaded area in
Fig. 7�b� shows the region where this occurs. A divergence at
a nonzero wave vector is indicative of microphase separation
�73,74�. In this case one would expect a charge density wave
�CDW� phase to appear �32,75�. The shaded region extends
below the binodal for bulk phase separation, so the CDW
phase should be observable in this part of the phase diagram.
In fact the CDW phase will be found whenever the lower
critical point lies below the Lifshitz line. The general idea
that a critical point in a charged system can be replaced by a
CDW phase was advanced by Nabutovskii, Nemov, and Pei-
sakhovich �32�.

The location of the Lifshitz line depends on the parameter
� which sets the range of the smoothing kernel w�r� in Eq.
�4�. If ��0.40 the Lifshitz line moves upward past the upper
critical point, which would then be expected to be replaced
by a CDW phase too. On the other hand if �	3.6, the Lif-
shitz line moves downward past the lower critical point.
These critical values of � depend only on the coefficient of
q2 in the expansion of the Fourier transform of w�r� about
q=0.

The Lifshitz line discussed here pertains to the macroion
structure factor. Although slightly different Lifshitz lines are
expected for each component of the structure factor matrix,

the locus of state points where the peak diverges �either on
the spinodal or on the boundary of the CDW phase� should
be the same for all components.

While the Lifshitz line marks an obvious change in the

behavior of S̃mm, the crossover from monotonic to damped
oscillatory asymptotic decay of the correlation functions
hij�r� is determined by Kirkwood or Fisher-Widom lines in
the phase diagram �76–79�. The difference between these is
rather subtle �79,80�, and one might loosely cover both pos-
sibilities by the phrase “Kirkwood-Fisher-Widom” �KFW�
line. The importance of the KFW line lies in the fact that it
also governs the asymptotic decay of the interface density
profiles, which behave in the same way as hij �78�. Thus the
calculations reported in Sec. IV, which assume that there is
no oscillatory behavior in the density profiles, requires as a
necessary minimum that the coexisting bulk densities both
lie above the KFW line. The location of the KFW line is

governed by the poles of S̃ij�q� in the complex q plane,
which either are purely imaginary or occur as complex con-

jugate pairs, and are the same for all components of S̃ij �78�.
If the pole nearest the real q axis is purely imaginary, then
monotonic decay is expected; conversely if a pair of complex
conjugate poles is nearest the real q axis, then damped oscil-
latory decay is expected �79�. Determination of the KFW line
is a hard numerical problem and has not been attempted for

the present DFT. However, the presence of a peak in S̃mm�q�
on the real q axis at q=0, or at q*�0, ought to be indicative
of whether the pole nearest the real q axis is, or is not, purely
imaginary. Thus the Lifshitz line should serve as a guide to
the location of the KFW line. In Sec. IV therefore, care was
taken to make sure that the coexisting bulk densities lie well
above the Lifshitz line.

VI. DISCUSSION

The paper presents a density functional theory for a mac-
roion suspension. The correlation free energy corresponds to
the macroion self-energy evaluated using Debye-Hückel
theory. These approximations render the theory tractable
without losing the basic phenomenology which resembles
that of other studies. The macroion self-energy depends on
the local ionic strength, but on both physical and technical
grounds it is found necessary to introduce the notion of
smoothing or smearing, so that the self-energy depends on
the ionic strength averaged over the vicinity of the macroion.
Here a completely phenomenological approach has been
taken to construct the details of the DFT. Other choices could
be made, or indeed more rigor could be introduced. Tests
indicate though that the general phenomenology �interface
structure, gross behavior of structure factors� is insensitive to
the details of the model at this point.

The advantage of a DFT is that one can compute the
interface structure and surface tension between coexisting
phase. The results are in accord with expectations from pre-
vious work �11,26–28�. In particular, the electrical structure
of the interface gives rise to a junction potential analogous to
the Donnan potential across a semipermeable membrane.
This arises from an electric dipole moment density �per unit

FIG. 7. �a� Macroion structure factors at �=0.03, and �s=4 �A�
and 30 M �B�. The inset shows the same curves in a double-

logarithmic plot. The normalization is such that S̃mm /�m→1 as q
→�. �b� Phase diagram augmented by the spinodal line �dashed�,
the Lifshitz line �dotted�, and the region where the macroion struc-
ture factor diverges at a nonzero wave vector �shaded�.
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area of interface�, which appears because charge neutrality is
locally violated in the vicinity of the interface. The surface
tension is found to be of the order kBT /�2.

Structure factors can be computed from the DFT. These
are found to obey the Stillinger-Lovett moment conditions,
although this is not a stringent test of the theory. The struc-
ture factors reveal an interesting phenomenon, namely, that
oscillatory behavior can appear in the �direct� correlation
functions, particularly at low ionic strength. Indeed the struc-
ture factors may be found to diverge at a nonzero wave vec-
tor on approaching the critical points, indicating that the
critical point�s� may be replaced by regions of microphase
separation corresponding to the appearance of a charge den-
sity wave phase. This phenomenon is peculiar to asymmetric
charged systems �32�, and is strictly absent in symmetric
systems such as the restricted primitive model. In this re-
spect, the possibility of CDW phases is correlated with the
appearance of the junction potential, which is also strictly
absent in symmetric systems �31�.

Given the approximate nature of the DFT, only certain
aspects of the present analysis might be expected to survive
in a full treatment. One of these is an upturn in macroion
structure factor at small q, even in the absence of a true
miscibility gap. This would reflect an increased osmotic
compressibility in this region of the phase diagram. This con-
clusion ought to be robust, since it does not require that
ZlB/� be so large as to stray into the nonlinear region.

Another expectation is the possible appearance of the
CDW phases. By analogy to the calculations for polyelectro-
lytes �73,74� one might expect these to resemble liquid crys-
tal mesophases �lamellar phase, etc.� in the vicinity of the
critical points. Away from the critical points though, the
structures that form might resemble micellar systems. For
example, at low macroion densities, an equilibrium popula-
tion of macroion aggregates might appear. This is not a hy-
pothetical possibility, since there is good evidence for the
appearance of equilibrium clusters in protein solutions and
colloidal suspensions �81�. The phenomenon in those sys-
tems is attributed to the presence of attractive forces which

are shorter in range than the electrostatic repulsive forces
�82,83�. However, essentially the same mechanism is in op-
eration in the present DFT, where the attractive forces corre-
spond to the correlation term and are of range �, and the
repulsive forces correspond to the mean-field electrostatic
term and are of infinite range. Interestingly, the simulations
of Linse could be interpreted as supporting the idea of the
appearance of a “micellar” aggregate phase before the bulk
phase instability. The published simulation snapshots do ap-
pear to show macroion clusters �Fig. 8�b� in Ref. �8�� and the
corresponding macroion-macroion pair distribution function
acquires a peak at contact which could be interpreted as be-
ing due to macroions in clusters �Fig. 5 in Ref. �8��. Whether
this is actually the case or not must remain a subject for
future investigations.
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APPENDIX A: CORRECTION TO REF. [11]

Chan �84� has remarked that an excluded volume contri-
bution was omitted in the theory of Ref. �11�. This appendix
describes the missing term. The error occurs in going from
Eq. �3� to Eq. �7� of Ref. �11� where the omitted contribution
arises from the fact that hm±�r�=gm±�r�−1=−1 for r�� /2.
In terms of the small ion–macroion interaction energy,
Ems / �VkBT�, the omitted contribution is

�m�
	r	��/2

d3r
ZlB

r
��+hm+�r� − �−hm−�r�� =

�Z2lB�m
2 �2

2
.

�A1�

This contribution passes unscathed through the thermody-
namic integration step needed to calculate the contribution to
the free energy because it is an athermal excluded volume
term. It is a positive, increasing function of �m and has the
tendency to stabilize the system against phase separation. If
the calculations of Ref. �11� are repeated with this contribu-
tion included, it is found that the basic phenomenology is
still the same, except that the miscibility gap in the ��m ,�s�
plane does not appear until somewhat larger values of ZlB/�.
Figure 8 shows the new results in comparison with those
reported in Table II of Ref. �11�.

The new calculation indicates that phase separation is ob-
served in an even more marginal window of admissible pa-
rameter space than was found in the earlier work. Thus one
can conclude that, to explain phase separation, some other
physics is likely to be required in addition to that captured in
the theory in Ref. �11�. This conclusion is now much closer
to the Poisson-Boltzmann cell model calculations which
show that phase separation in a cell model is a consequence
of the linearization approximation �17–19�.

APPENDIX B: SIGNIFICANCE OF SELF-ENERGY

The discussion at the end of the previous Appendix and
Fig. 8 both indicate that the self-energy is still important for

FIG. 8. State diagram showing where a miscibility gap is found
for the full theory of Ref. �11� including the omitted term �solid
line�, compared to the original results �dashed line�. The shaded
region shows where Z	4� / lB, which is one possible criterion for
the acceptability of the Debye-Hückel approximation for the polar-
ization energy �11�.
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this problem. This is supported by the calculation in the main
text which shows that phase separation can be driven by the
self-energy term alone for ZlB/�	6.89 �i.e., at the hyper-
critical point in the presence of salt for Z=103�, which is not
far above saturating value of the effective charge Zeff lB/�
�4 �8,12�.

To refine the analysis, consider the problem in the absence
of added salt. The inverse compressibility from Eq. �6� is

1

kBT

�p

��
= Z −

3Z2lB�6u + 2u�

4��6u + 1�3
�B1�

where u=�ZlB/�. The first term is the ideal term �dominated
by the counterions� and the second term is the contribution
of the self-energy term. The second term is always negative,
and therefore tends to destabilize the system. This observa-
tion can be placed on a tighter numerical footing though. The
critical point for the system studied by Reščič and Linse �10�
is at ��0.15 and � / lB�2/2.6=0.77 �in their notation, �II
=2lB/��1/T�. Making a conservative estimate by replacing
Z by Zeff=4� / lB�3.1 in the above, the contribution of the
self-energy term to the inverse compressibility at the critical
point is �−1.17, in other words 1.17/3.1�40% of the ideal
term at the state point in question �only the free counterions
are supposed to contribute to the free term�. One can also try
to compare with the actual compressibility. From Fig. 4�b� of
Ref. �10�, one can estimate the slope of the p��m� curve at a
temperature slightly below the critical point. Thus, at � / lB
�2/2.846=0.703, the turning points of p��m� are at
�pRm

3 /kBT ,�mRm
3 ���0.002 53,1 /27. � and �0.002 98,1 /34. �.

From this, �1/kBT��p /��m��0.002 53−0.002 98� / �1/27
−1/34�=−0.059. Now, one expects the inverse compressibil-
ity to scale as �1/kBT��p /��m�A	T /Tc−1	� in the vicinity of
Tc where ��1.24 is the compressibility exponent �62�.
Matching to the estimate just made therefore, the prefactor in
the inverse compressibility scaling law is estimated to be A
�0.059� 	0.703/0.77−1	−�=1.2. This should be compared
to the self-energy contribution to the inverse compressibility
estimated above �−1.17 at the critical point�. The comparison
suggests that the self-energy contribution should be impor-
tant for a significant range of temperatures around the critical
point.

APPENDIX C: SMALL ION SUBSYSTEM

It is often assumed that the size of the small ions should
be unimportant for the problem of the phase behavior of
macroion suspensions. However this statement requires some
caution, as I now discuss. As Onsager remarked a long time
ago �85�, one cannot strictly set the small ion size to zero. In
fact the problem is more serious than this because the small
ion subsystem becomes increasingly nonideal as the ion size
is decreased. To make this concrete, imagine that the small
ion subsystem is modeled by the restricted primitive model
�RPM�. The RPM has a critical point at a reduced tempera-
ture �s / lB�0.050 �86�, where �s is the small ion diameter.
To be treated as ideal, one should therefore require �s / lB
�0.050. The question is, can this be made consistent with
the phase behavior of the macroion plus small ion system?

If one takes � / �ZlB��0.14 as characteristic of the re-
duced temperature at which the macroion system shows in-
teresting phase behavior �see Fig. 1 for instance�, then the
above condition becomes Z�s /��0.050/0.14�0.35 or Z
�0.35�� /�s�. This means that the calculations in the main
text are safe �take for example �s=1 nm; then Z�35 is re-
quired for �=100 nm�. Moreover, since Z��2 might be ex-
pected for macroions at constant surface charge density, one
can always satisfy the inequality by making � sufficiently
large.

By way of contrast, the simulations reported by Hyn-
ninen, Dijkstra, and Panagiotopoulos �54� have the small ion
critical point at a higher temperature than the macroion plus
small ion system. Thus it is not obvious that their results are
immediately applicable to the present problem of the phase
behavior of macroion suspensions where the supporting elec-
trolyte can be assumed to be ideal. This might also be the
reason why a qualitatively different effect of added salt on
the macroion critical point is seen in these simulations, com-
pared to theoretical calculations �11,20,21,39,40,53� �and the
present one; it should nevertheless be stressed that the theo-
retical calculations involve approximations which may be
wrong�.

APPENDIX D: NUMERICAL APPROACH

The task is to find density profiles �i�x� that minimize the
grand potential in Eq. �7�. The most accurate method is to
solve the integral equations for the profiles in Eq. �13�, to-
gether with the Poisson equation. However, this is hard. An
alternative is to adopt a variational approach in which � is
minimized with respect to parameters in trial functions
which specify the density profiles �87,88�. This is the ap-
proach that has been taken here. Note that � is the difference
between � for the inhomogeneous problem and � in a co-
existing homogeneous system, therefore minimizing � is
equivalent to minimizing �.

The ion density profiles have to satisfy a sum rule since
the potential difference �
=
���−
�−�� is fixed by the
coexisting bulk densities as described in Sec. III. One can
replace one of the ion density profiles by 
�x� to ensure this
sum rule is automatically satisfied. In the present case, a
choice was made to use the set 
�m ,�+ ,
� as a basis, with �−

derived analytically from the Poisson equation �−=Z�m+�−
− �d2
 /dx2� / �4�lB�. The first integral of the Poisson equa-
tion shows that one can additionally ensure global charge
neutrality by making sure that d
 /dx→0 as 	x	→�. Once
the �i are known, the average ionic strength �̄I and the sur-
face tension � are determined numerically by quadratures.

To represent the basis set 
�m ,�+ ,
�, three copies of the
function

f�x;�±,a±,ar� =
a−ex/�+ − a+e−x/�−

a−a+ + a−ex/�+ + a+e−x/�−
+ �

r=1

N

arHr�x/��

�D1�

are introduced. In this, the Hr are Hermite functions, with
�=2/ �1/�−+1/�+� used to scale the argument. Each copy of
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f is parametrized by the correlation lengths �± and amplitude
set 
a± ,ar�, and has the properties that f → ± �1−a±e�x/�±� as
x→ ±�. One copy of f is assigned to each member of

�m ,�+ ,
�, and is scaled and shifted to match the limit-
ing values at x→ ±�, for example �m=�m�−���1− f� /2
+�m����1+ f� /2 �for the electrostatic potential, one sets

�−��=0 and 
���=�
 as explained in the main text�. The
three copies of f have different amplitude sets 
a± ,ar� but
share common values for �± since the asymptotic decay of
the density profiles into the bulk phases is expected to be
governed by the bulk correlation length �it is these values of

�± that are reported in Fig. 6�. A finite set of N Hermite
functions has been included in each copy of f to allow for an
arbitrary structure at the interface. In practice the minimiza-
tion problem is well behaved only if the density profiles
smoothly interpolate between the bulk values, for which case
typically N=3–6 Hermite functions achieve convergence in
� to an accuracy of the order 1%. At this point, the interface
problem has been reduced to a multivariate minimization
over the three copies of the amplitude set 
a± ,ar�, plus the
correlation lengths �±. Numerical minimization of � with re-
spect to these parameters is then undertaken by standard
methods �89�.

�1� A. K. Akora and B. V. R. Tata, Adv. Colloid Interface Sci. 78,
49 �1998�.

�2� J.-P. Hansen and H. Löwen, Annu. Rev. Phys. Chem. 51, 209
�2000�.

�3� C. N. Likos, Phys. Rep. 348, 267 �2001�.
�4� Y. Levin, Rep. Prog. Phys. 65, 1577 �2002�.
�5� L. Belloni, J. Phys.: Condens. Matter 12, R549 �2000�.
�6� P. Linse and V. Lobaskin, Phys. Rev. Lett. 83, 4208 �1999�.
�7� P. Linse and V. Lobaskin, J. Chem. Phys. 112, 3917 �2000�.
�8� P. Linse, J. Chem. Phys. 113, 4359 �2000�.
�9� V. Lobaskin and K. Qamhieh, J. Phys. Chem. B 107, 8022

�2003�.
�10� J. Reščič and P. Linse, J. Chem. Phys. 114, 10131 �2001�.
�11� P. B. Warren, J. Chem. Phys. 112, 4683 �2000�.
�12� S. Alexander, P. M. Chaikin, G. J. Morales, P. Pincus, and D.

Hone, J. Chem. Phys. 80, 5776 �1984�.
�13� R. D. Groot, J. Chem. Phys. 95, 9191 �1991�.
�14� L. Belloni, Colloids Surf., A 140, 227 �1998�.
�15� E. Trizac, L. Bocquet, and M. Aubouy, Phys. Rev. Lett. 89,

248301 �2002�.
�16� L. Bocquet, E. Trizac, and M. Aubouy, J. Chem. Phys. 117,

8138 �2002�.
�17� H. H. von Grünberg, R. van Roij, and G. Klein, Europhys.

Lett. 55, 580 �2001�.
�18� M. Deserno and H. H. von Grünberg, Phys. Rev. E 66, 011401

�2002�.
�19� M. N. Tamashiro and H. Schiessel, J. Chem. Phys. 119, 1855

�2003�.
�20� A. Diehl, M. C. Barbosa, and Y. Levin, Europhys. Lett. 53, 86

�2001�.
�21� J.-F. Dufrêche, T. O. White, and J.-P. Hansen, Mol. Phys. 101,

1741 �2003�.
�22� Y. Levin, E. Trizac, and L. Bocquet, J. Phys.: Condens. Matter

15, S3523 �2003�.
�23� E. Trizac and Y. Levin, Phys. Rev. E 69, 031403 �2004�.
�24� K. S. Schmitz, Langmuir 13, 5849 �1997�.
�25� F. Gröhn and M. Antonietti, Macromolecules 33, 5938 �2000�.
�26� J. M. Brader and R. Evans, Europhys. Lett. 49, 678 �2000�.
�27� E. Scholten, R. Tuinier, R. H. Tromp, and H. N. W. Lek-

kerkerker, Langmuir 18, 2234 �2002�.
�28� P. B. Warren, J. Phys.: Condens. Matter 15, S3467 �2003�.
�29� F. H. Stillinger and R. Lovett, J. Chem. Phys. 49, 1991 �1968�.
�30� P. A. Martin, Rev. Mod. Phys. 60, 1075 �1988�.

�31� P. B. Warren, e-print cond-mat/0006289.
�32� V. M. Nabutovskii, N. A. Nemov, and Y. G. Peisakhovich,

Phys. Lett. 79A, 98 �1980�.
�33� J. S. Hoye and G. Stell, J. Phys. Chem. 94, 7899 �1990�.
�34� M. E. Fisher, J. Stat. Phys. 75, 1 �1994�.
�35� M. Knott and I. J. Ford, Phys. Rev. E 65, 061401 �2002�.
�36� R. Evans, Adv. Phys. 28, 143 �1979�.
�37� R. Evans, in Fundamentals of Inhomogeneous Fluids, edited

by D. Henderson �Marcel Dekker, New York, 1992�, Chap. 3.
�38� E. B. Smith, Basic Chemical Thermodynamics �Clarendon,

Oxford, 1990�.
�39� R. van Roij and J.-P. Hansen, Phys. Rev. Lett. 79, 3082

�1997�.
�40� R. van Roij, M. Dijkstra, and J.-P. Hansen, Phys. Rev. E 59,

2010 �1999�.
�41� B. Beresford-Smith, D. Y. Chan, and D. J. Mitchell, J. Colloid

Interface Sci. 105, 216 �1985�.
�42� More complicated expressions for the self-energy are available

�11�, but it has been checked that the use of these does not alter
the basic phenomenology.

�43� It has been checked that the phenomenology is robust with
respect to the choice of w�r�.

�44� R. Evans and T. J. Sluckin, Mol. Phys. 40, 413 �1980�.
�45� T. J. Sluckin, J. Chem. Soc., Faraday Trans. 2 77, 1029 �1981�.
�46� R. Evans and M. Hasegawa, J. Phys. C 14, 5225 �1981�.
�47� M. J. Stevens and M. O. Robbins, Europhys. Lett. 12, 81

�1990�.
�48� C. N. Patra and S. K. Ghosh, Phys. Rev. E 48, 1154 �1993�.
�49� P. B. Warren, J. Phys. II 7, 343 �1997�.
�50� E. González-Tovar, Mol. Phys. 97, 1203 �1999�.
�51� L. B. Bhuiyan and C. W. Outhwaite, J. Chem. Phys. 116, 2650

�2002�.
�52� Note the approximate constancy of Z�=2ZlB/� at the critical

points in Table V of Ref. �51�.
�53� S. N. Petris and D. Y. C. Chan, J. Chem. Phys. 116, 8588

�2002�.
�54� A.-P. Hynninen, M. Dijkstra, and A. Z. Panagiotopoulos, J.

Chem. Phys. 123, 084903 �2005�.
�55� J. S. Walker and C. A. Vause, J. Chem. Phys. 79, 2660 �1983�.
�56� F. A. Hinchey, Introduction to Applicable Mathematics �Wiley

Eastern, New Delhi, 1980�.
�57� Equation �9� limits to 
�z /2 which is different from Eq. �5�.

This is because the constraint term in Eq. �5� is inserted by

PHASE SEPARATION, INTERFACE PROPERTIES, AND… PHYSICAL REVIEW E 73, 011411 �2006�

011411-11



hand and does not correspond to a charging process. The dif-
ficulty is more apparent than real though, since it disappears
when the chemical potentials are computed.

�58� F. G. Donnan, Z. Elektrochem. Angew. Phys. Chem. 17, 572
�1911�.

�59� J. T. G. Overbeek, J. Colloid Sci. 8, 593 �1953�.
�60� V. M. Nabutovskii and N. A. Nemov, J. Colloid Interface Sci.

114, 208 �1986�.
�61� B. Groh, R. Evans, and S. Dietrich, Phys. Rev. E 57, 6944

�1998�.
�62� J. S. Rowlinson and B. Widom, Molecular Theory of Capillar-

ity �Clarendon, Oxford, 1989�.
�63� I. Iosilevski and A. Chigvintsev, J. Phys. IV 10, 451 �2000�.
�64� J.-P. Hansen and I. A. McDonald, Theory of Simple Liquids

�Academic, New York, 1976�.
�65� N. H. March and M. P. Tosi, Atomic Dynamics in Liquids

�Macmillan, London, 1976�.
�66� M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

�Clarendon, Oxford, 1986�.
�67� J. Stafiej and J. P. Badiali, J. Chem. Phys. 106, 8579 �1997�.
�68� B. P. Lee and M. E. Fisher, Europhys. Lett. 39, 611 �1997�.
�69� J.-N. Aqua and M. E. Fisher, Phys. Rev. Lett. 92, 135702

�2004�.
�70� For example, it has not been checked that gij�r��0. Also, one

could require that the gij�r� computed from the structure fac-
tors are the same as those that can be computed by solving the
inhomogeneous problem of the density profiles in an appropri-
ately chosen external potential �36,37�. Such requirements
would introduce additional numerical complexity into the
problem though.

�71� A. J. Archer, C. N. Likos, and R. Evans, J. Phys.: Condens.
Matter 14, 12031 �2002�.

�72� One would not expect consistency by the energy or virial
routes because these invoke the pair potentials. While the pair

potentials are of course specified in the primitive model, the
DFT itself is approximate.

�73� V. Y. Borue and I. Y. Erukhimovich, Macromolecules 21, 3240
�1988�.

�74� J. F. Joanny and L. Leibler, J. Phys. �France� 51, 545 �1990�.
�75� V. M. Nabutovskii, N. A. Nemov, and Y. G. Peisakhovich,

Mol. Phys. 54, 979 �1985�.
�76� J. G. Kirkwood, Chem. Rev. �Washington, D.C.� 19, 275

�1936�.
�77� M. E. Fisher and B. Widom, J. Chem. Phys. 50, 3756 �1969�.
�78� R. Evans, R. J. F. Leote de Carvalho, J. R. Henderson, and D.

C. Hoyle, J. Chem. Phys. 100, 591 �1994�.
�79� R. J. F. Leote de Carvalho and R. Evans, Mol. Phys. 83, 619

�1994�.
�80� Roughly, the period of the oscillations diverges as one ap-

proaches a Kirkwood line, but not as one approaches a Fisher-
Widom line �79�.

�81� A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U.
Egelhaaf, and P. Schurtenberger, Nature �London� 432, 492
�2004�.

�82� J. Groenewold and W. K. Kegel, J. Phys. Chem. B 105, 11702
�2001�.

�83� F. Sciortino, S. Mossa, E. Zaccarelli, and P. Tartaglia, Phys.
Rev. Lett. 93, 055701 �2004�.

�84� D. Y. C. Chan, Phys. Rev. E 63, 061806 �2001�.
�85� L. Onsager, J. Phys. Chem. 43, 189 �1939�.
�86� E. Luijten, M. E. Fisher, and A. Z. Panagiotopoulos, Phys.

Rev. Lett. 88, 185701 �2002�.
�87� J. R. Smith, Phys. Rev. 181, 522 �1969�.
�88� L. Orosz, Phys. Rev. B 37, 6490 �1988�.
�89� W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical Recipes �Cambridge University Press, Cam-
bridge, U.K., 1989�.

PATRICK B. WARREN PHYSICAL REVIEW E 73, 011411 �2006�

011411-12


